首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   3篇
  国内免费   1篇
化学   215篇
数学   8篇
物理学   46篇
  2023年   3篇
  2022年   2篇
  2021年   11篇
  2020年   6篇
  2019年   5篇
  2018年   7篇
  2016年   5篇
  2015年   4篇
  2014年   5篇
  2013年   11篇
  2012年   30篇
  2011年   22篇
  2010年   24篇
  2009年   11篇
  2008年   18篇
  2007年   25篇
  2006年   13篇
  2005年   9篇
  2004年   11篇
  2003年   8篇
  2002年   6篇
  2000年   1篇
  1999年   4篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   5篇
  1988年   3篇
  1987年   2篇
  1972年   1篇
  1967年   2篇
排序方式: 共有269条查询结果,搜索用时 156 毫秒
41.
Indoles react intramolecularly with alkynes in the presence of gold catalysts to give from six- to eight-membered-ring annulated compounds. The cationic Au(I) complex [Au(P{C(6)H(4)(o-Ph)}(tBu)(2))(NCMe)]SbF(6) is the best catalyst for the formation of six- and seven-membered rings by 6-endo-dig, 6-exo-dig, and 7-exo-dig cyclizations. Indoloazocines are selectively obtained with AuCl(3) as catalyst in a rare 8-endo-dig process. In this process allenes or tetracyclic annulated derivatives are also formed as a result of an initial fragmentation reaction. The intermolecular reaction of indoles with alkynes proceeds to form 3-alkenylated intermediates that react with a second equivalent of indole to give bisindolyl derivatives. Indoles that are substituted at the 3-position react intermolecularly with alkynes to give 2-alkenylated intermediates that can be trapped intramolecularly with the appropriate nucleophiles.  相似文献   
42.
New homo- and heterometallic, hexa- and pentanuclear complexes of formula {[Cu2(mpba)2(H2O)F][Cu(Me5dien)]4}(PF6)(3).5H2O (1), {[Cu2(Me3mpba)2(H2O)2][Cu(Me5dien)]4}(ClO4)(4).12H2O (2), {[Cu2(ppba)2][Cu(Me5dien)]4}(ClO4)4 (3), and [Ni(cyclam)]{[Cu2(mpba)2][Ni(cyclam)]3}(ClO4)(4).6H2O (4) [mpba=1,3-phenylenebis(oxamate), Me3mpba=2,4,6-trimethyl-1,3-phenylenebis(oxamate), ppba=1,4-phenylenebis(oxamate), Me5dien=N,N,N'N' ',N' '-pentamethyldiethylenetriamine, and cyclam=1,4,8,11-tetraazacyclotetradecane] have been synthesized through the use of the "complex-as-ligand/complex-as-metal" strategy. The structures of 1-3 consist of cationic CuII6 entities with an overall [2x2] ladder-type architecture which is made up of two oxamato-bridged CuII3 linear units connected through two m- or p-phenylenediamidate bridges between the two central copper atoms to give a binuclear metallacyclic core of the cyclophane-type. Complex 4 consists of cationic CuII2NiII3 entities with an incomplete [2x2] ladder-type architecture which is made up of oxamato-bridged CuIINiII and CuIINiII2 linear units connected through two m-phenylenediamidate bridges between the two copper atoms to give a binuclear metallacyclophane core. The magnetic properties of 1-3 and 4 have been interpreted according to their distinct "dimer-of-trimers" and "dimer-plus-trimer" structures, respectively, (H=-J(S1A.S3A+S1A.S4A+S2B.S5B+S2B.S6B)-J'S1A.S2B). Complexes 1-4 exhibit moderate to strong antiferromagnetic coupling through the oxamate bridges (-JCu-Cu=81.3-105.9 cm-1; -JCu-Ni=111.6 cm-1) in the trinuclear and/or binuclear units. Within the binuclear metallacyclophane core, a weak to moderate ferromagnetic coupling (J'Cu-Cu=1.7-9.0 cm-1) operates through the double m-phenylenediamidate bridge, while a strong antiferromagnetic coupling (J'Cu-Cu=-120.6 cm-1) is mediated by the double p-phenylenediamidate bridge.  相似文献   
43.
Ceramic and glass are some of the more recent engineering materials and those that are most resistant to environmental conditions. They belong to advanced materials in that they are being developed for the aerospace and electronics industries. In the last decade, a new class of ceramic materials has been the focus of particular attention. The materials were produced with natural, renewable resources (wood or wood-based products). In this work, we have synthesised a new biomorphic ceramic material from oak wood and Si infiltration. After the material characterization, we have optimized the dissolution of the sample by acid attack in an oven under microwave irradiation. Experimental designs were used as a multivariate strategy for the evaluation of the effects of varying several variables at the same time. The optimization was performed in two steps using factorial design for preliminary evaluation and a Draper-Lin design for determination of the critical experimental conditions. Five variables (time, power, volume of HNO3, volume H2SO4 and volume of HF) were considered as factors and as a response the concentration of different metal ions in the optimization process. Interactions between analytical factors and their optimal levels were investigated using a Draper-Lin design.  相似文献   
44.
The low-spin iron(III) complex AsPh(4)[Fe(III)(bpy)(CN)(4)].CH(3)CN (1) [AsPh(4) = tetraphenylarsonium cation] and the heterobimetallic chains [{Fe(III)(L)(CN)(4)}(2)Ni(II)(H(2)O)(2)].4H(2)O with L = bpy (2) and phen (3) [bpy = 2,2'-bipyridine and phen = 1,10-phenanthroline] have been prepared and their structures determined by X-ray diffraction methods. The structure of 1 consists of mononuclear [Fe(bpy)(CN)(4)](-) anions, tetraphenylarsonium cations and acetonitrile molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of the bidentate bpy and four carbon atoms of four terminal cyanide groups building a distorted octahedral surrounding around the metal atom. 2 and 3 are isomorphous compounds whose structure is made up of neutral 4,2-ribbon like bimetallic chains of formula [{Fe(III)(L)(CN)(4)}(2)Ni(II)(H(2)O)(2)] where the [Fe(III)(L)(CN)(4)](-) unit acts as a bis-monodentate bridging ligand toward the trans-diaquanickel(II) units through two of its four cyanide groups in cis positions. The chains exhibit two orientations in the unit cell and they interact with each other through hydrogen bonds involving the coordination and crystallization water molecules together with the uncoordinated cyanide nitrogen atoms of the [Fe(L)(CN)(4)](-) units. Compounds 2 and 3 behave as ferromagnetic Fe(III)(2)Ni(II) chains which interact ferromagnetically at very low temperatures in the case of 2, whereas metamagnetic-like behaviour is observed for with a critical field (H(c)) around 200 G. For H > H(c) the ferromagnetic Fe(III)(2)Ni(II) chains of 3 exhibit a frequency dependence of the out-of-phase ac susceptibility signal at T < 3.5 K.  相似文献   
45.
Four gadolinium(III) complexes with dicarboxylate ligands of formulas [Gd2(mal)3(H2O)5]n.2nH2O (1), [Gd2(mal)3(H2O)6]n (2), [NaGd(mal)(ox)(H2O)3]n (3), and [Gd2(ox)3(H2O)6]n.2.5nH2O (4) (mal = malonate; ox = oxalate) have been prepared, and their magnetic properties have been investigated as a function of the temperature. The structures of 1-3 have been determined by X-ray diffraction methods. The crystal structure of 4 was already known, and it is made of hexagonal layers of Gd atoms that are bridged by bis-bidentate oxalate. Compound 1 is isostructural with the europium(III) malonate complex [Eu2(mal)3(H2O)5]n.2nH2O,1 whose structure was reported elsewhere. The Gd atoms in 1 define a two-dimensional network where a terminal bidentate and bridging bidentate/bis-monodentate and tris-bidentate coordination modes of malonate occur. Compound 2 has a three-dimensional structure with a structural phase transition at 226 K, which involves a change of the space group from I2/a to Ia. Although its structure at room temperature was already known, that below 226 K was not. Pairs of Gd atoms with a double oxo-carboxylate bridge occur in both phases, and the main differences between both structures deal with the Gd environment and the H-bond pattern. 3 is also a three-dimensional compound, and it was obtained by reacting Gd(III) ions with malonic acid in a silica gel medium. Oxalic acid results as an oxidized product of the malonic acid, and single crystals of the heteroleptic complex were produced. The Gd atoms in 3 are connected through bis-bidentate oxalate and carboxylate-malonate bridges in the anti-anti and anti-syn coordination modes. Compounds 1 and 2 exhibit weak but significant ferromagnetic couplings between the Gd(III) ions through the single (1) and double (2) oxo-carboxylate bridges, whereas antiferromagnetic interactions across the bis-bidentate oxalate account for the overall antiferromagnetic behavior observed in 3 and 4.  相似文献   
46.
47.
Three iron(II) complexes, [Fe(TPMA)(BIM)](ClO4)2?0.5H2O ( 1 ), [Fe(TPMA)(XBIM)](ClO4)2 ( 2 ), and [Fe(TPMA)(XBBIM)](ClO4)2 ?0.75CH3OH ( 3 ), were prepared by reactions of FeII perchlorate and the corresponding ligands (TPMA=tris(2‐pyridylmethyl)amine, BIM=2,2′‐biimidazole, XBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐biimidazole, XBBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐bibenzimidazole). The compounds were investigated by a combination of X‐ray crystallography, magnetic and photomagnetic measurements, and Mössbauer and optical absorption spectroscopy. Complex 1 exhibits a gradual spin crossover (SCO) with T1/2=190 K, whereas 2 exhibits an abrupt SCO with approximately 7 K thermal hysteresis (T1/2=196 K on cooling and 203 K on heating). Complex 3 is in the high‐spin state in the 2–300 K range. The difference in the magnetic behavior was traced to differences between the inter‐ and intramolecular interactions in 1 and 2 . The crystal packing of 2 features a hierarchy of intermolecular interactions that result in increased cooperativity and abruptness of the spin transition. In 3 , steric repulsion between H atoms of one of the pyridyl substituents of TPMA and one of the benzene rings of XBBIM results in a strong distortion of the FeII coordination environment, which stabilizes the high‐spin state of the complex. Both 1 and 2 exhibit a photoinduced low‐spin to high‐spin transition (LIESST effect) at 5 K. The difference in the character of intermolecular interactions of 1 and 2 also manifests in the kinetics of the decay of the photoinduced high‐spin state. For 1 , the decay rate constant follows the single‐exponential law, whereas for 2 it is a stretched exponential, reflecting the hierarchical nature of intermolecular contacts. The structural parameters of the photoinduced high‐spin state at 50 K are similar to those determined for the high‐spin state at 295 K. This study shows that N‐alkylation of BIM has a negligible effect on the ligand field strength. Therefore, the combination of TPMA and BIM offers a promising ligand platform for the design of functionalized SCO complexes.  相似文献   
48.
Entanglement and its consequences—in particular the violation of Bell inequalities, which defies our concepts of realism and locality—have been proven to play key roles in Nature by many experiments for various quantum systems. Entanglement can also be found in systems not consisting of ordinary matter and light, i.e. in massive meson–antimeson systems. Bell inequalities have been discussed for these systems, but up to date no direct experimental test to conclusively exclude local realism was found. This mainly stems from the fact that one only has access to a restricted class of observables and that these systems are also decaying. In this Letter we put forward a Bell inequality for unstable systems which can be tested at accelerator facilities with current technology. Herewith, the long awaited proof that such systems at different energy scales can reveal the sophisticated “dynamical” nonlocal feature of Nature in a direct experiment gets feasible. Moreover, the role of entanglement and CP\mathcal{CP} violation, an asymmetry between matter and antimatter, is explored, a special feature offered only by these meson–antimeson systems.  相似文献   
49.
A series of 3-[3-(4-aryl-1-piperazinyl)-propyl]-1H-indole derivatives (12a-h) was synthesized and evaluated for binding affinity at the human 5-hydroxytryptamine(1A) receptor (5-HT(1A)R) compounds (12b) and (12h) showed the highest 5-HT(1A) receptor affinity (IC(50)=15 nM). Molecular docking studies with all the compounds in a homology model of 5-HT(1A) showed that the main interaction anchoring the ligand in the receptor was a charge-reinforced bond between the protonated nitrogen atom (N-4) of the piperazine ring and Aspartate(3.32).  相似文献   
50.
Two novel heterobimetallic complexes of formula [Cr(bpy)(ox)(2)Co(Me(2)phen)(H(2)O)(2)][Cr(bpy)(ox)(2)]·4H(2)O (1) and [Cr(phen)(ox)(2)Mn(phen)(H(2)O)(2)][Cr(phen)(ox)(2)]·H(2)O (2) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and Me(2)phen = 2,9-dimethyl-1,10-phenanthroline) have been obtained through the "complex-as-ligand/complex-as-metal" strategy by using Ph(4)P[CrL(ox)(2)]·H(2)O (L = bpy and phen) and [ML'(H(2)O)(4)](NO(3))(2) (M = Co and Mn; L' = phen and Me(2)phen) as precursors. The X-ray crystal structures of 1 and 2 consist of bis(oxalato)chromate(III) mononuclear anions, [Cr(III)L(ox)(2)](-), and oxalato-bridged chromium(III)-cobalt(II) and chromium(III)-manganese(II) dinuclear cations, [Cr(III)L(ox)(μ-ox)M(II)L'(H(2)O)(2)](+)[M = Co, L = bpy, and L' = Me(2)phen (1); M = Mn and L = L' = phen (2)]. These oxalato-bridged Cr(III)M(II) dinuclear cationic entities of 1 and 2 result from the coordination of a [Cr(III)L(ox)(2)](-) unit through one of its two oxalato groups toward a [M(II)L'(H(2)O)(2)](2+) moiety with either a trans- (M = Co) or a cis-diaqua (M = Mn) configuration. The two distinct Cr(III) ions in 1 and 2 adopt a similar trigonally compressed octahedral geometry, while the high-spin M(II) ions exhibit an axially (M = Co) or trigonally compressed (M = Mn) octahedral geometry in 1 and 2, respectively. Variable temperature (2.0-300 K) magnetic susceptibility and variable-field (0-5.0 T) magnetization measurements for 1 and 2 reveal the presence of weak intramolecular ferromagnetic interactions between the Cr(III) (S(Cr) = 3/2) ion and the high-spin Co(II) (S(Co) = 3/2) or Mn(II) (S(Mn) = 5/2) ions across the oxalato bridge within the Cr(III)M(II) dinuclear cationic entities (M = Co and Mn) [J = +2.2 (1) and +1.2 cm(-1) (2); H = -JS(Cr)·S(M)]. Density functional electronic structure calculations for 1 and 2 support the occurrence of S = 3 Cr(III)Co(II) and S = 4 Cr(III)Mn(II) ground spin states, respectively. A simple molecular orbital analysis of the electron exchange mechanism suggests a subtle competition between individual ferro- and antiferromagnetic contributions through the σ- and/or π-type pathways of the oxalato bridge, mainly involving the d(yz)(Cr)/d(xy)(M), d(xz)(Cr)/d(xy)(M), d(x(2)-y(2))(Cr)/d(xy)(M), d(yz)(Cr)/d(xz)(M), and d(xz)(Cr)/d(yz)(M) pairs of orthogonal magnetic orbitals and the d(x(2)-y(2))(Cr)/d(x(2)-y(2))(M), d(xz)(Cr)/d(xz)(M), and d(yz)(Cr)/d(yz)(M) pairs of nonorthogonal magnetic orbitals, which would be ultimately responsible for the relative magnitude of the overall ferromagnetic coupling in 1 and 2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号